An RNA-mediated DNA melting mechanism for CRISPR-Cas9

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

CRISPR-Cas9 systems, adaptive defense mechanisms in bacteria and archaea, have been widely adopted as powerful gene editing tools, revolutionizing biological and medical research. In the first steps of CRISPR-Cas9 gene editing, the Cas9 protein, in complex with RNA, facilitates DNA melting and subsequent RNA-DNA hybrid formation, but the atomic-level mechanism of this fundamental process is not fully understood. Here, we present the results of long-timescale molecular dynamics simulations in which Cas9-RNA complexes bound to double-helical DNA and promoted the formation of RNA-DNA base pairs in a unidirectional, stepwise manner. Unexpectedly, we observed a direct role for the RNA in facilitating DNA melting events through a mechanism in which RNA bases intercalated within the DNA and promoted strand separation. In addition, breathing motions within the Cas9 DNA-binding cleft contributed to the sequential formation of RNA-DNA base pairs. These simulation results, obtained for two structurally distinct Cas9 proteins, together with supporting experimental work, suggest a novel RNA-dependent mechanism for DNA melting that may be conserved in other Cas proteins.

Article activity feed