High-fidelity CRISPR genome editing of single-nucleotide mutation with near-complementary guide RNA via enhanced target binding kinetics

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The CRISPR-Cas9 system is a powerful genome editing tool capable of precisely recognizing and cleaving specific DNA sequences, and has been extensively investigated as a strategy for correcting mutations associated with genetic diseases and cancer. However, conventional CRISPR genome engineering often fail to discriminate single-nucleotide mutations from wild-type alleles when the mutation is located outside the protospacer adjacent motif (PAM) sequence. To address this limitation, we developed a RNA engineering approach for designing near-complementary single guide RNA (sgRNA) that contain intentional mismatches within the seed region of the sgRNA. Single molecule kinetic analyses showed that the near-complementary sgRNA selectively reduces the binding affinity of CRISPR ribonucleoprotein complex by via differentiated increment in the dissociation rates to the wild-type target DNA compared to the mutant allele. The engineered kinetic characteristics of near-complementary sgRNAs enable highly specific genome editing of single-base mutations without reliance on PAM proximity. We demonstrate the application of the strategy to the a cancer-specific single-nucleotide G228A (-124C > T) mutation in the TERT promoter, frequently found in glioblastomas and other tumors, that does not generate a canonical PAM sequence. Our near-complementary sgRNA successfully induced selective editing of the mutant allele while sparing the wild-type sequence. Furthermore, single-molecule fluorescence resonance energy transfer (smFRET) analyss revealed distinct differences in binding kinetics between mutant and wild-type DNA, providing kinetic insight into the discrimination process. We conclude that the near-complementary sgRNA CRISPR editing strategy facilitates precise PAM-independent targeting of single-nucleotide mutations without protein engineering and offers a molecular framework for expanding the specificity and applicability of CRISPR-based genome and epigenome editing technologies.

Article activity feed