Design Rules for Expanding PAM Compatibility in CRISPR-Cas9 from the VQR, VRER and EQR variants

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Expanding the range of Protospacer Adjacent Motifs (PAMs) recognized by CRISPR-Cas9 is essential for broadening genome-editing applications. Here, we combine molecular dynamics simulations with graph-theory and centrality analyses to dissect the principles of PAM recognition in three Cas9 variants - VQR, VRER, and EQR - that target non-canonical PAMs. We show that efficient recognition is not dictated solely by direct contacts between PAM-interacting residues and DNA, but also by a distal network that stabilizes the PAM-binding domain and preserves long-range communication with REC3, a hub that relays signals to the HNH nuclease. A key role emerges for the D1135V/E substitution, which enables stable DNA binding by K1107 and preserves key DNA phosphate locking interactions via S1109, securing stable PAM engagement. In contrast, variants carrying only R-to-Q substitutions at PAM-contacting residues, though predicted to enhance adenine recognition, destabilize the PAM-binding cleft, perturb REC3 dynamics, and disrupt allosteric coupling to HNH. Together, these findings establish that PAM recognition requires local stabilization, distal coupling, and entropic tuning, rather than a simple consequence of base-specific contacts. This framework provides guiding principles for engineering Cas9 variants with expanded PAM compatibility and improved editing efficiency.

Article activity feed