Genetic inactivation of the Translin/Trax RNase activity alters small RNAs including miRNAs, disrupts gene expression and impairs distinct forms of hippocampal synaptic plasticity and memory

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Neurons utilize RNA interference in the reversible translational repression of synaptically localized mRNAs, enabling rapid translation in response to synaptic activity. Two evolutionarily conserved proteins, Translin and Trax, form an RNase complex which processes miRNAs, tRNAs and siRNAs. To determine the specific role of the RNase activity of this complex in brain function, we employed a mouse line harboring a point mutation in Trax (E126A) that renders the Translin/Trax RNase inactive. At the molecular level, we found alterations in the levels of multiple small RNAs including miRNAs, tsRNAs and substantial downregulation of gene expression at the mRNA level in the hippocampus of TraxE126A mice. At the synaptic level, TraxE126A mice exhibit deficits in specific forms of long-term hippocampal synaptic plasticity. At the behavioral level, TraxE126A mice display impaired long-term spatial memory and altered open-field and acoustic-startle behavior. These studies reveal the functional role of Translin/Trax RNase in the mammalian brain.

Article activity feed