Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background. Artificial intelligence (AI) has impacted healthcare at urban and academic medical centers globally. The current focus on AI deployments in urban areas and the history of US urban-rural digital divides raises concerns that the promise of AI may not be realized in rural communities. This may exacerbate well-documented health disparities. Without the benefits of AI-driven improvements in patient outcomes and increased efficiency, rural healthcare facilities may fall farther behind their urban counterparts and rural hospital closure rates may continue to rise. Methods. We conducted a scoping review following the PRISMA guidelines. We included peer-reviewed, original research studies indexed in PubMed, Embase, and WebOfScience after January 1, 2010 and through April 29, 2025. Studies were required to discuss the development, implementation, or evaluation of AI tools in rural US healthcare, including frameworks that help facilitate AI development (e.g., data warehouses). Findings. Our search strategy found 26 studies meeting inclusion criteria after full text screening with 14 papers discussing predictive AI models and 12 papers discussing data or research infrastructure. AI models most commonly targeted resource allocation and distribution. Few studies explored model deployment and impact. Half noted the lack of data and analytic resources as a limitation to both development and validation. None of the studies discussed examples of generative AI being trained, evaluated, or deployed in a rural setting. Interpretation. Practical limitations may be influencing and limiting the types of AI models evaluated in the rural US. We noted validation of tools in the rural US was underwhelming, and ultimately, neglected. With few studies moving beyond AI model design and development stages, there is a clear gap in our understanding of how to reliably validate, deploy, and sustain AI models in rural settings to advance health in all communities.

Article activity feed