Epydemix: An open-source Python package for epidemic modeling with integrated approximate Bayesian calibration
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We present Epydemix, an open-source Python package for the development and calibration of stochastic compartmental epidemic models. The framework supports flexible model structures that incorporate demographic information, age-stratified contact matrices, and dynamic public health interventions. A key feature of Epydemix is its integration of Approximate Bayesian Computation (ABC) techniques to perform parameter inference and model calibration through comparison between observed and simulated data. The package offers a range of ABC methods such as simple rejection sampling, simulation-budget-constrained rejection, and Sequential Monte Carlo (ABC-SMC). Epydemix is modular, and supports ABC-based calibration both for models defined within the package and for those developed externally. To demonstrate the computational framework capabilities, we discuss usage examples that include (i) simulating an intervention-driven model with time-varying parameters, and (ii) benchmarking calibration performance using synthetic epidemic data. We further illustrate the use of the package in a retrospective case study that includes scenario projections under alternative intervention assumptions. By lowering the barrier for the implementation of computational and inference approaches, Epydemix makes epidemic modeling more accessible to a wider range of users, from academic researchers to public health professionals.