Menin-MLL1 complex cooperates with NF-Y to promote HCC survival

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Identification of new therapeutic targets in hepatocellular carcinoma (HCC) remains critical. Chromatin regulating complexes are frequently mutated or aberrantly expressed in HCC, suggesting dysregulation of chromatin environments is a key feature driving liver cancer. To investigate whether the altered chromatin state in HCC cells could be targeted, we designed and utilized an epigenome-focused CRISPR library that targets genes involved in chromatin regulation. This focused approach allowed us to test multiple HCC cell lines in both 2D and 3D growth conditions, which revealed striking differences in the essentiality of genes involved in ubiquitination and multiple chromatin regulators vital for HCC cell survival in 2D but whose loss promoted growth in 3D. We found the core subunits of the menin-MLL1 complex among the strongest essential genes for HCC survival in all screens and thoroughly characterized the mechanism through which the menin-MLL1 complex promotes HCC cell growth. Inhibition of the menin-MLL1 interaction led to global changes in occupancy of the complex with concomitant decreases in H3K4me3 and expression of genes involved in PI3K/AKT/mTOR signaling pathway. Menin inhibition affected chromatin accessibility in HCC cells, revealing that increased chromatin accessibility at sites not bound by menin-MLL1 was associated with the recruitment of the pioneer transcription factor complex NF-Y. A CRISPR/Cas9 screen of chromatin regulators in the presence of menin inhibitor SNDX-5613 revealed a significantly increased cell death when combined with NFYB knockout. Together these data show that menin-MLL1 is necessary for HCC cell survival and cooperates with NF-Y to regulate oncogenic gene transcription.

Article activity feed