Ubiquitin-specific protease 20 promotes CCCP-induced mitophagy through deubiquitination and stabilization of serine/threonine protein kinase PINK1

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

While Parkinson’s disease (PD) is predominantly sporadic, various mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been linked to the autosomal recessive form of PD. PINK1, a serine/threonine protein kinase, holds a pivotal role in mitophagy - a process that selectively eliminates damaged mitochondria, overseeing mitochondrial quality control and ultimately safeguarding against neuronal cell loss in PD. Understanding the regulation of PINK1 stability is essential in comprehending PD pathology, given its involvement in a pro-survival pathway. Although some components of the ubiquitin-proteasome system (UPS) are recognized for mediating the proteolysis of PINK1, the specific enzyme(s) responsible for positively influencing PINK1 stability have remained elusive. In this study, we demonstrated that ubiquitin-specific protease 20 (USP20) functions as a novel deubiquitinating enzyme targeting PINK1. We found that USP20 positively regulates PINK1 levels by hydrolyzing Lys 48-linked polyubiquitin chains, promoting mitophagy under the treatment of mitochondrial depolarizing agent carbonyl cyanide m -chlorophenyl hydrazine (CCCP). Furthermore, CCCP treatment accelerates the deubiquitinating activity of USP20, facilitating the degradation of impaired mitochondria and enhancing mitochondrial quality control via PINK1 accumulation. Taken together, these findings unveil a novel enzyme, USP20, positively impacting PINK1 level and promoting CCCP-induced mitophagy. In addition, this study establishes a comprehensive map depicting how PINK1 can be regulated both positively and negatively through the coordinated action of multiple members in the UPS.

Article activity feed