Multi-site phosphorylation of BCL2L13 in a TBK1- and AMPK-dependent manner reveals new modes of mitophagy regulation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Mitophagy is a selective autophagic process that eliminates damaged mitochondria via lysosomal degradation, playing a crucial role in maintaining cellular metabolic balance. Mitophagy can occur through two pathways: ubiquitin-dependent and ubiquitin-independent. Recently, we and others have shown that, upon mitochondrial stress, AMP-activated protein kinase (AMPK) contributes to Parkin-mediated, ubiquitin-dependent mitophagy. The ubiquitin-independent pathway involves multiple outer mitochondrial membrane (OMM) “mitophagy receptors” that contain LC3-interacting region (LIR) motifs, including BNIP3, NIX/ BNIP3L, FUNDC1, and BCL2L13. LIR motifs bind Atg8/LC3 family proteins, facilitating the recruitment of the autophagosome membrane to target damaged mitochondria for degradation. The kinase Unc-51 Like autophagy activating kinase 1 (ULK1) phosphorylates the serine preceding the LIR motif in BNIP3, NIX, and FUNDC1, enhancing their binding to LC3 and promoting mitophagy. However, while BCL2L13 has been identified as a ULK1 binding partner, its regulation by phosphorylation remains unclear. We utilized mass spectrometry (MS) to map phosphorylation sites in BCL2L13 following mitochondrial stress and developed phospho-specific antibodies against two sites, Ser261 and Ser275, which were induced after exposure to the mitochondrial uncoupler, CCCP. Endogenous BCL2L13 Ser261 and Ser275 were both phosphorylated in an AMPK-dependent manner in cells and tissues. As neither site matches the established AMPK substrate consensus motif, we sought to identify which kinases directly mediate their phosphorylation downstream of AMPK. Surprisingly, genetic studies revealed that ULK1 is not regulating either site, but instead, TBK1 is controlling Ser275. This work reveals that BCL2L13 is unique amongst mitophagy receptors in being activated by mitochondrial stress and innate immune stimuli in an AMPK- and TBK1-dependent manner.