Ex vivo massively multidimensional diffusion-relaxation correlation MRI: scan-rescan reproducibility and caveats

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Massively multidimensional diffusion-relaxation correlation MRI (MMD-MRI) provides information beyond the traditional voxel-averaged metric that may better characterize the microstructural characteristics of biological tissues. MMD-MRI reproducibility has been established in clinical settings, but has yet to be thoroughly evaluated under preclinical conditions, where superior hardware and modulated gradient waveforms enhance its performance. In this study, we investigate the reproducibility of MMD-MRI on a micro-imaging system using ex vivo mouse brains. Notably, the estimated signal fractions of intra-voxel spectral components in the MD-MRI distribution, corresponding to white and gray matter, along with the frequency-dependent parameters, demonstrated high reproducibility. We identified bias between scan and rescan in some of the metrics, which we attribute to the time gap between repeated scans pointing to a long-time progressive fixation effect. We compare our results with in vivo results from clinical scanners and show the reproducibility of diffusion frequency-dependent metrics to benefit from the improved gradient hardware on our preclinical setup. Our results inform future micro-imaging ex vivo MMD-MRI studies of the reproducibility of MMD-MRI metrics and their dependence on fixation time.

Article activity feed