A Bioelectric Router for Adaptive Isochronous Neurostimulation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Objective

Multipolar intracranial electrical brain stimulation (iEBS) is a method that has potential to improve clinical applications of mono- and bipolar iEBS. Current tools for researching multipolar iEBS are proprietary, can have high entry costs, lack flexibility in managing different stimulation parameters and electrodes, and can include clinical features unnecessary for the requisite exploratory research. This is a factor limiting the progress in understanding and applying multipolar iEBS effectively. To address these challenges, we developed the Bioelectric Router for Adaptive Isochronous Neuro stimulation (BRAINS) board.

Approach

The BRAINS board is a cost-effective and customizable device designed to facilitate multipolar stimulation experiments across a 16-channel electrode array using common research electrode setups. The BRAINS board interfaces with a microcontroller, allowing users to configure each channel for cathodal or anodal input, establish a grounded connection, or maintain a floating state. The design prioritizes ease of integration by leveraging standard tools like a microcontroller and an analog signal isolators while providing options to customize setups according to experimental conditions. It also ensures output isolation, reduces noise, and supports remote configuration changes for rapid switching of electrode states. To test the efficacy of the board, we performed bench-top validation of monopolar, bipolar, and multipolar stimulation regimes. The same regimes were tested in vivo in mouse primary visual cortex and measured using Neuropixel recordings.

Main Results

The BRAINS board demonstrates no meaningful differences in Root Mean Square Error (RMSE) noise or signal-to-noise ratio compared to the baseline performance of the isolated stimulator alone. The board supports configuration changes at a rate of up to 600 Hz without introducing residual noise, enabling high-frequency switching necessary for temporally multiplexed multipolar stimulation.

Significance

The BRAINS board represents a significant advancement in exploratory brain stimulation research by providing a user-friendly, customizable, open source, and cost-effective tool capable of conducting sophisticated, reproducible, and finely controlled stimulation experiments. With a capacity for effectively real-time information processing and efficient parameter exploration the BRAINS board can enhance both exploratory research on iEBS and enable improved clinical use of multipolar and closed-loop iEBS.

Article activity feed