Self-organized and self-sustained ensemble activity patterns in simulation of mouse primary motor cortex
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The idea of self-organized signal processing in the cerebral cortex has become a focus of research since Beggs and Plentz 1 reported avalanches in local field potential recordings from organotypic cultures and acute slices of rat somatosensory cortex. How the cortex intrinsically organizes signals remains unknown. A current hypothesis was proposed by the condensed matter physicists Bak, Tang, and Wiesenfeld 2 when they conjectured that if neuronal avalanche activity followed inverse power law distributions, then brain activity may be set around phase transitions within self-organized signals. We asked if we would observe self-organized signals in an isolated slice of our data driven detailed simulation of the mouse primary motor cortex? If we did, would we observe avalanches with power-law distributions in size and duration and what would they look like? Our results demonstrate that a brief unstructured stimulus (100ms, 57 μ A current) to a small subset of neurons (about 181 of more than 10,000) in a simulated mouse primary motor cortex slice results in self-organized and self-sustained avalanches with power-law size and duration distributions and values similar to those reported from in vivo and in vitro experiments. We observed 4 cross-layer and cross-neuron population patterns, 3 of which displayed a dominant rhythmic component. Avalanches were each composed of one or more of the 4 population patterns.