Critical Scaling of Novelty in the Cortex

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ability to detect unanticipated, novel events and rapidly relay this information across neural networks is fundamental to brain function, enabling the selection of appropriate behavioral responses. Here, we examine the transmission of holographically triggered action potentials in primary visual cortex of quietly resting mice, focusing on the dynamics of communication from pyramidal neurons. We demonstrate that these novel action potentials, which are uncorrelated with preceding activity, exert a disproportionally large influence on neighboring neurons. Their influence scales robustly to an exponent between 0.2 and 0.3 relative to their number. Remarkably, even a small number of novel action potentials can engage a majority of the local network, achieving high decoding accuracy of the perturbation origin in the face of high trial-by-trial variability and ongoing activity characterized by scale-invariant, parabolic neuronal avalanches. This heightened susceptibility to small, local perturbations aligns with the behavior of complex systems exhibiting critical dynamics. Our findings reveal that scaling underpins the efficient communication of unanticipated action potentials, suggesting it is a fundamental mechanism for detecting and processing novel events in the brain. These results provide new insights into the neural basis of novelty detection and highlight the importance of critical dynamics in cortical network function.

Article activity feed