Collateral connectomes of Esr1-positive hypothalamic neurons modulate defensive behavior plasticity

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ventromedial hypothalamus (VMH) projects to the periaqueductal gray (PAG) and anterior hypothalamic nucleus (AHN), mediating freezing and escape behaviors, respectively. We investigated VMH collateral (VMH-coll) neurons, which innervate both PAG and AHN, to elucidate their role in postsynaptic processing and defensive behavior plasticity. Using all-optical voltage imaging of 22,151 postsynaptic neurons ex vivo, we found that VMH-coll neurons engage inhibitory mechanisms at both synaptic ends and can induce synaptic circuit plasticity. In vivo optogenetic activation of the VMH-coll somas induced escape behaviors. We identified an Esr1-expressing VMH-coll subpopulation with postsynaptic connectome resembling that of wild-type collaterals on the PAG side. Activation of Esr1+VMH-coll neurons evoked freezing and unexpected flattening behavior, previously not linked to the VMH. Neuropeptides such as PACAP and dynorphin modulated both Esr1+VMH-coll connectomes. In vivo kappa-opioid receptor antagonism impaired Esr1+VMH-coll-mediated defensive behaviors. These findings unveiled the central role of VMH-coll pathways in innate defensive behavior plasticity.

Article activity feed