Stress-induced mitochondrial fragmentation in endothelial cells disrupts blood-retinal barrier integrity causing neurodegeneration

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Increased vascular leakage and endothelial cell (EC) dysfunction are major features of neurodegenerative diseases. Here, we investigated the mechanisms leading to EC dysregulation and asked whether altered mitochondrial dynamics in ECs impinge on vascular barrier integrity and neurodegeneration. We show that ocular hypertension, a major risk factor to develop glaucoma, induced mitochondrial fragmentation in retinal capillary ECs accompanied by increased oxidative stress and ultrastructural defects. Analysis of EC mitochondrial components revealed overactivation of dynamin-related protein 1 (DRP1), a central regulator of mitochondrial fission, during glaucomatous damage. Pharmacological inhibition or EC-specific in vivo gene delivery of a dominant negative DRP1 mutant was sufficient to rescue mitochondrial volume, reduce vascular leakage, and increase expression of the tight junction claudin-5 (CLDN5). We further demonstrate that EC-targeted CLDN5 gene augmentation restored blood-retinal-barrier integrity, promoted neuronal survival, and improved light-evoked visual behaviors in glaucomatous mice. Our findings reveal that preserving mitochondrial homeostasis and EC function are valuable strategies to enhance neuroprotection and improve vision in glaucoma.

Article activity feed