Therapeutic Potential of AAV2-shmTOR Gene Therapy in Reducing Retinal Inflammation and Preserving Endothelial Integrity in Age-Related Macular Degeneration

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Age-related macular degeneration (AMD) is a prevalent retinal disorder that leads to central vision loss, mainly due to chronic inflammation. Tumor necrosis factor-alpha (TNF-α) is a critical mediator of inflammatory responses within the retinal environment. This study has investigated TNF-α's influence on inflammatory cytokine production and endothelial barrier integrity in human microglial (HMC3) and endothelial (HUVEC) cells. We found that TNF-α significantly elevated the expression and secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β) in HMC3 cells and disrupted endothelial tight junctions in HUVECs, as evidenced by weakened ZO-1 staining and compromised barrier function. To mitigate these effects and further investigate the in vitro mechanism of actions in CRG-01’s in vivo therapeutic efficacy of anti-inflammation, we employed AAV2-shmTOR, CRG-01, as the candidate for therapeutic vector targeting the mammalian target of the rapamycin (mTOR) pathway. TNF-α-induced IL-6, IL-1β, and NF-κB signaling in HMC3 cells were significantly reduced by AAV2-shmTOR treatment, which may present a promising avenue for the fight against AMD. It also effectively preserved endothelial tight junction integrity in TNF-α-treated HUVECs, providing reassurance about its effectiveness. Furthermore, the supernatant medium collected from AAV2-shmTOR-treated HMC3 cells decreased oxidative stress, protein oxidation, and cytotoxicity in ARPE retinal pigment epithelial cells. These results strongly suggested that CRG-01, the candidate therapeutic vector of AAV2-shmTOR, may have a therapeutic potential to treat AMD-related retinal inflammation.

Article activity feed