Genomics of experimental adaptive radiation in the cryptic coloration of feather lice

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

1

A major challenge faced by living organisms is adaptation to novel environments. This process is poorly understood because monitoring genetic changes in natural populations is difficult. One way to simplify the task is to focus on organisms that can be studied in captivity under conditions that remain largely natural. Feather lice (Insecta, Phthiraptera, Ischnocera) are host-specific parasites of birds that live, feed, and breed solely on feathers. Birds defend themselves against lice, which damage feathers, by killing them with their beaks during bouts of preening. In response, feather lice have evolved background-matching cryptic coloration to help them avoid preening. We experimentally manipulated the color backgrounds of host-specific pigeon lice ( Columbicola columbae ) by confining them to different colored breeds of rock pigeon ( Columba livia ) over a period of four years (ca. 60 louse generations). Over the course of the experiment, we sampled lice from pigeons every six months for genomic resequencing, and then calculated allele frequency differences and trajectories to identify putative genomic sites under selection. We documented many loci that changed in response to selection for color. Most loci putatively under selection were unshared among replicate populations of lice, indicating that independent adaptation of distinct lineages to the same novel environment resulted in similar phenotypes driven by different genotypes.

Article activity feed