De novo design of potent CRISPR-Cas13 inhibitors

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

CRISPR-Cas systems are transformative tools for gene editing which can be tuned or controlled by anti-CRISPRs (Acrs) - phage derived inhibitors that regulate CRISPR-Cas activity. However, Acrs that are capable of inhibiting biotechnologically relevant CRISPR systems are relatively rare and challenging to discover. To overcome this limitation, we describe a highly successful, rapid, and generalisable approach that leverages de novo protein design to develop new-to-nature proteins for controlling CRISPR-Cas activity. Using CRISPR-Cas13 as a representative example, we demonstrate that AI-designed anti-CRISPRs (AIcrs) are capable of highly potent and specific inhibition of CRISPR-Cas13 proteins. We present a comprehensive workflow for design validation and demonstrate AIcrs functionality in controlling CRISPR-Cas13 activity in bacteria. The ability to design bespoke inhibitors of Cas effectors will contribute to the ongoing development of CRISPR-Cas tools in diverse applications across research, medicine, agriculture, and microbiology.

Article activity feed