From Lab to Field: CRISPRing Major Cultivated Solanaceae for Crop Improvement
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The Solanaceae family includes some of the most economically and agronomically im-portant crops, such as tomato, potato, pepper and eggplant. Recently, CRISPR/Cas-based genome editing has emerged as a powerful tool for functional genomics and crop improvement, enabling precise and efficient genetic modifications. This review provides an overview of CRISPR/Cas-mediated genome editing technologies and their applications in the major cultivated Solanaceae crops. The use of systems for targeted gene knockout and knock-in approaches is described, together with advances in precision editing strategies such as base editing and prime editing, which allow precise nucleotide substitutions and small sequence changes. The expanding CRISPR toolbox is further explored through alternative Cas proteins, such as Cas12a and Cas13 with distinct targeting features and potential applications. Emerging delivery strategies, including ribonucleoprotein-mediated editing in protoplasts, virus-induced gene editing (VIGE), and de novo induction of meristems, represent promising approaches to generate transgene-free edited plants. In addition, the current status of field trials involving genome-edited Solanaceae crops in Europe is outlined, considering the regulatory landscape and legislative requirements for their release in the environment. Despite regulatory constraints, some ge-nomeedited crops have reached the market, highlighting their potential to contribute to sustainable agriculture and crop improvement.