Investigating the Functional Role of the DI-DII Linker in Nav1.5 Channel Function
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The cardiac voltage-gated sodium channel, Nav1.5 initiates the cardiac action potential. Its dysfunction can lead to dangerous arrhythmias, sudden cardiac arrest, and death. The functional Nav1.5 core consists of four homologous repeats (I, II, III, and IV), each formed from a voltage sensing and a pore domain. The channel also contains three cytoplasmic linkers (I-II, II-III, and III-IV). While Nav1.5 structures have been published, the I-II and II-III linkers have remained absent, are predicted to be disordered, and their functional role is not well understood.
We divided the I-II linker into eight regions ranging in size from 32 to 52 residues, chosen based on their distinct properties. Since these regions had unique sequence properties, we hypothesized that they may have distinct effects on channel function. We tested this hypothesis with experiments with individual Nav1.5 constructs with each region deleted. These deletions had small effects on channel gating, though two (430 – 457del and 556 – 607del) reduced peak current. Phylogenetic analysis of the I-II linker revealed five prolines (P627, P628, P637, P640, P648) that were conserved in mammals but absent from the Xenopus sequence. We created mutant channels, where these were replaced with their Xenopus counterparts. The only mutation that had a significant effect on channel gating was P627S, which depolarized channel activation (10.13 +/- 2.28 mV). Neither a phosphosilent (P627A) nor a phosphomimetic (P627E) mutation had a significant effect, suggesting that either phosphorylation or another specific serine property is required.
Since deletion of large regions had little effect on channel gating while a point mutation had a conspicuous impact, the I-II linker role may be to facilitate interactions with other proteins. Variants may have a larger impact if they create or disrupt these interactions, which may be key in evaluating pathogenicity of variants.