BrainACTIV: Identifying visuo-semantic properties driving cortical selectivity using diffusion-based image manipulation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The human brain efficiently represents visual inputs through specialized neural populations that selectively respond to specific categories. Advancements in generative modeling have enabled data-driven discovery of neural selectivity using brain-optimized image synthesis. However, current methods independently generate one sample at a time, without enforcing structural constraints on the generations; thus, these individual images have no explicit point of comparison, making it hard to discern which image features drive neural response selectivity. To address this issue, we introduce Brain Activation Control Through Image Variation (BrainACTIV), a method for manipulating a reference image to enhance or decrease activity in a target cortical region using pretrained diffusion models. Starting from a reference image allows for fine-grained and reliable offline identification of optimal visuo-semantic properties, as well as producing controlled stimuli for novel neuroimaging studies. We show that our manipulations effectively modulate predicted fMRI responses and agree with hypothesized preferred categories in established regions of interest, while remaining structurally close to the reference image. Moreover, we demonstrate how our method accentuates differences between brain regions that are selective to the same category, and how it could be used to explore neural representation of brain regions with unknown selectivities. Hence, BrainACTIV holds the potential to formulate robust hypotheses about brain representation and to facilitate the production of naturalistic stimuli for neuroscientific experiments.

Article activity feed