Levetiracetam prevents Aβ42 production through SV2a-dependent modulation of App processing in Alzheimer’s disease models
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In Alzheimer’s disease (AD), amyloid-beta (Aβ) peptides are produced by proteolytic cleavage of the amyloid precursor protein (APP), which can occur during synaptic vesicle (SV) cycling at presynapses. Precisely how amyloidogenic APP processing may impair presynaptic proteostasis and how to therapeutically target this process remains poorly understood. Using App knock-in mouse models of early Aβ pathology, we found proteins with hampered degradation accumulate at presynaptic sites. At this mild pathological stage, amyloidogenic processing leads to accumulation of Aβ 42 inside SVs. To explore if targeting SVs modulates Aβ accumulation, we investigated levetiracetam (Lev), a SV-binding small molecule drug that has shown promise in mitigating AD-related pathologies despite its mechanism of action being unclear. We discovered Lev reduces Aβ 42 levels by decreasing amyloidogenic processing of APP in a SV2a-dependent manner. Lev corrects SV protein levels and cycling, which results in increased surface localization of APP, where it favors processing via the non-amyloidogenic pathway. Using metabolic stable isotopes and mass spectrometry we confirmed that Lev prevents the production of Aβ 42 in vivo. In transgenic mice with aggressive pathology, electrophysiological and immunofluorescent microscopy analyses revealed that Lev treatment reduces SV cycling and minimizes synapse loss. Finally, we found that human Down syndrome brains with early Aβ pathology, have elevated levels of presynaptic proteins, confirming a comparable presynaptic deficit in human brains. Taken together, we report a mechanism that highlights the therapeutic potential of Lev to modify the early stages of AD and represent a promising strategy to prevent Aβ 42 pathology before irreversible damage occurs.
One Sentence Summary
We discovered that the SV-binding drug levetiracetam prevents Aβ 42 production by modulating SV cycling which alters APP localization and thus proteolytic processing, highlighting its therapeutic potential for AD.