Connectome-based Predictive Models of General and Specific Executive Functions
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Executive functions, the set of cognitive control processes that facilitate adaptive thoughts and actions, are composed primarily of three distinct yet interrelated cognitive components: Inhibition, Shifting, and Updating. While prior research has examined the nature of different components as well as their inter-relationships, fewer studies examined whole-brain connectivity to predict individual differences for the three cognitive components and associated tasks. Here, using the Connectome-based Predictive Modelling (CPM) approach and open-access data from the Human Connectome Project, we built brain network models to successfully predict individual performance differences on the Flanker task, the Dimensional Change Card Sort task, and the 2-back task, each putatively corresponding to Inhibition, Shifting, and Updating. We focused on grayordinate fMRI data collected during the 2-back tasks after confirming superior predictive performance over resting-state and volumetric data. High cross-task prediction accuracy as well as joint recruitment of canonical networks, such as the frontoparietal and default-mode networks, suggest the existence of a common executive function factor. To investigate the relationships among the three executive function components, we developed new measures to disentangle their shared and unique aspects. Our analysis confirmed that a shared executive function component can be predicted from functional connectivity patterns densely located around the frontoparietal, default-mode and dorsal attention networks. The Updating-specific component showed significant cross-prediction with the general executive function factor, suggesting a relatively stronger role than the other components. In contrast, the Shifting-specific and Inhibition-specific components exhibited lower cross-prediction performance, indicating more distinct and specialized roles. Given the limitation that individual behavioral measures do not purely reflect the intended cognitive constructs, our study demonstrates a novel approach to infer common and specific components of executive function.