Neural Mechanisms Supporting the Relationship between Working Memory Capacity and Proactive Control

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Recent prior work suggests a preferential relationship between working memory capacity (WMC) and proactive control, yet the neural mechanisms that support this relationship are still not well understood. We directly addressed this question by leveraging the Dual Mechanisms of Cognitive Control (DMCC) project, as it employed a fMRI neuroimaging design optimized to test for individual differences (sample N > 100), with task variants that independently assessed proactive and reactive control relative to baseline conditions. Behavioral analyses replicated prior work with the AX-CPT paradigm, in which a measure of target preparation based on contextual cues (the A-cue Bias index) was both reliably increased under task conditions encouraging proactive control and positively associated with WMC. Analyses of fMRI activity indicated that A-cue Bias was selectively linked to increased cue-related neural activity in left motor cortex (lMOT). Additionally, WMC was associated with increased cue-related activation in right dorsolateral prefrontal cortex (rDLPFC), even when statistically controlling for baseline and reactive conditions. The relationship between these two effects was supported by a latent path analysis, which suggested that the rDLPFC-lMOT circuit preferentially mediates the WMC-A-cue Bias relationship present under proactive task conditions. The results suggest this neural circuit may translate strategic task goals into active response preparation as a mechanism of proactive control. Individuals high in WMC may be better able to implement proactive task strategies when instructed via contextual cues. The sensitivity of the rDLPFC-lMOT circuit to individual differences suggest it as a potential target for cognitive enhancement.

Article activity feed