SARS-CoV-2 ORF3a Protein Impairs Syncytiotrophoblast Maturation, Alters ZO-1 Localization, and Shifts Autophagic Pathways in Trophoblast Cells and 3D Organoids

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

SARS-CoV-2 infection poses a significant risk to placental physiology, but its impact on placental homeostasis is not well understood. We and others have previously shown that SARS-CoV-2 can colonize maternal and fetal placental cells, yet the specific mechanisms remain unclear. In this study, we investigate ORF3a, a key accessory protein of SARS-CoV-2 that exhibits continuous mutations. Our findings reveal that ORF3a is present in placental tissue from pregnant women infected with SARS-CoV-2 and disrupts autophagic flux in placental cell lines and 3D stem-cell-derived trophoblast organoids (SCTOs), impairing syncytiotrophoblast differentiation and trophoblast invasion. This disruption leads to protein aggregation in cytotrophoblasts (CTB) and activates secretory autophagy, increasing CD63+ extracellular vesicle secretion, along with ORF3a itself. ORF3a also compromises CTB barrier integrity by disrupting tight junctions via interaction with ZO-1, mediated by its PDZ-binding motif, SVPL. Colocalization of ORF3a and ZO-1 in SARS-CoV-2-infected human placental tissue supports our in vitro findings. Deleting the PDZ binding motif in the ORF3a protein (ORF3a-noPBM mutant) restored proper ZO-1 localization at the cell junctions in an autophagy-independent manner. Lastly, we demonstrate that constitutive ORF3a expression induces SC-TOs to transition towards a secretory autophagy pathway likely via the PBM motif, as the ORF3a-NoPBM mutants showed a significant lack of CD63 expression. This study demonstrates the functional impact of ORF3a on placental autophagy and reveals a new mechanism for the activation of secretory autophagy, which may lead to increased extracellular vesicle secretion. These findings provide a foundation for exploring therapeutic approaches targeting ORF3a, specifically focusing on its PBM region to block its interactions with host cellular proteins and limiting placental impact.

Article activity feed