Architecture of the ATP-driven motor for protein import into chloroplasts

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Thousands of nuclear-encoded proteins are transported into chloroplasts through the TOC-TIC translocon spanning the chloroplast envelope membranes. A motor complex pulls the translocated proteins out of the TOC-TIC complex into the chloroplast stroma by hydrolyzing ATP. The Orf2971-FtsHi complex was suggested to serve as the ATP-hydrolyzing motor in Chlamydomonas reinhardtii , but little is known about its architecture and assembly. Here, we report the 3.2-Å resolution structure of the Chlamydomonas Orf2971-FtsHi complex. The 20-subunit complex spans the chloroplast inner envelope with two bulky modules protruding into the intermembrane space and stromal matrix. Six subunits form a hetero-hexamer potentially providing the pulling force through ATP hydrolysis. The remaining subunits, including potential enzymes/chaperones, likely facilitate the complex assembly and regulate its proper function. Our results provide the structural foundation for mechanistic understanding of chloroplast protein translocation.

Article activity feed