Insights into the regulation of VPS13 family bridge-like lipid transfer proteins from the structure of VPS13C

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Bridge-like lipid transfer proteins (BLTPs) play central roles in redistributing lipids from their primary site of synthesis in the endoplasmic reticulum to other organelles. They comprise bridge-domains spanning between organelles at contact sites that allow lipids to transit the cytosol between adjacent membranes. The assembly of BLTPs into complexes with adaptor proteins enables their lipid transfer ability. To address the mechanisms underlying assembly and regulation of BLTP complexes, we used cryo-EM to resolve the structure of one such BLTP, the Parkinson’s protein VPS13C, at near-atomic resolution. The structure identifies a lipid-transfer-nonpermissive conformation, where the built-in C-terminal VAB adaptor module blocks the end of the lipid transfer bridge, interfering with lipid delivery. We also identify calmodulin, central to calcium signaling, as a VPS13 partner, suggesting calcium regulation of VPS13 function. Altogether, this structure of intact VPS13C serves as starting point to understand its regulation and, more broadly, that of other BLTPs.

Article activity feed