SARS-CoV-2 Omicron subvariant genomic variation associations with immune evasion in Northern California: A retrospective cohort study
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background
The possibility of association between SARS-CoV-2 genomic variation and immune evasion is not known among persons with Omicron variant SARS-CoV-2 infection.
Methods
In a retrospective cohort, using Poisson regression adjusting for sociodemographic variables and month of infection, we examined associations between individual non-lineage defining mutations and SARS-CoV-2 immunity status, defined as a) no prior recorded infection, b) not vaccinated but with at least one prior recorded infection, c) complete primary series vaccination, and/or d) primary series vaccination and ≥ 1 booster. We identified all non-synonymous single nucleotide polymorphisms (SNPs), insertions and deletions in SARS-CoV-2 genomes with ≥5% allelic frequency and population frequency of ≥5% and ≤95%. We also examined correlations between the presence of SNPs with each other, with subvariants, and over time.
Results
Seventy-nine mutations met inclusion criteria. Among 15,566 persons infected with Omicron SARS-CoV-2, 1,825 (12%) were unvaccinated with no prior recorded infection, 360 (2%) were unvaccinated with a recorded prior infection, 13,381 (86%) had a complete primary series vaccination, and 9,172 (58%) had at least one booster. After examining correlation between SNPs, 79 individual non-lineage defining mutations were organized into 38 groups. After correction for multiple testing, no individual SNPs or SNP groups were significantly associated with immunity status levels.
Conclusions
Genomic variation identified within SARS-CoV-2 Omicron specimens was not significantly associated with immunity status, suggesting that contribution of non-lineage defining SNPs to immune evasion is minimal. Larger-scale surveillance of SARS-CoV-2 genomes linked with clinical data can help provide information to inform future vaccine development.