Functional investigation of a putative calcium-binding site involved in the inhibition of inositol 1,4,5-trisphosphate receptor activity
Listed in
- Reading list (BiophysicsColab)
Abstract
A wide variety of factors influence inositol 1,4,5-trisphosphate (IP 3 ) receptor (IP 3 R) activity resulting in modulation of intracellular Ca 2+ release. This regulation is thought to define the spatio-temporal patterns of Ca 2+ signals necessary for the appropriate activation of downstream effectors. The binding of both IP 3 and Ca 2+ are obligatory for IP 3 R channel opening, however, Ca 2+ regulates IP 3 R activity in a biphasic manner. Mutational studies have revealed that Ca 2+ binding to a high-affinity pocket formed by the ARM3 domain and linker domain promotes IP 3 R channel opening without altering the Ca 2+ dependency for channel inactivation. These data suggest a distinct low-affinity Ca 2+ binding site is responsible for the reduction in IP 3 R activity at higher [Ca 2+ ]. We determined the consequences of mutating a cluster of acidic residues in the ARM2 and central linker domain reported to coordinate Ca 2+ in cryo-EM structures of the IP 3 R type 3. This site is termed the “CD Ca 2+ binding site” and is well-conserved in all IP 3 R sub-types. We show that the CD site Ca 2+ binding mutants where the negatively charged glutamic acid residues are mutated to alanine exhibited enhanced sensitivity to IP 3 -generating agonists. Ca 2+ binding mutants displayed spontaneous elemental Ca 2+ events (Ca 2+ puffs) and the number of IP 3 -induced Ca 2+ puffs was significantly augmented in cells stably expressing Ca 2+ binding site mutants. When measured with “on-nucleus” patch clamp, the inhibitory effect of high [Ca 2+ ] on single channel-open probability (P o ) was reduced in mutant channels and this effect was dependent on [ATP]. These results indicate that Ca 2+ binding to the putative CD Ca 2+ inhibitory site facilitates the reduction in IP 3 R channel activation when cytosolic [ATP] is reduced and suggest that at higher [ATP], additional Ca 2+ binding motifs may contribute to the biphasic regulation of IP 3 -induced Ca 2+ release.