5-axis CNC micro-milling machine for three-dimensional microfluidics

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The gold standard of microfluidic fabrication techniques, SU-8 patterning, requires photolithography equipment and facilities and is not suitable for 3D microfluidics. A 3D printer is more convenient and may achieve high resolutions comparable to conventional photolithography, but only with select materials. Alternatively, 5-axis CNC micro-milling machines can efficiently prototype structures with high resolutions, high aspect ratios, and non-planar geometries from a variety of materials. These machines, however, have not been catered for laboratory-based, small-batch microfluidics development and are largely inaccessible to researchers. In this paper, we present a new 5-axis CNC micro-milling machine specifically designed for prototyping 3D microfluidic channels, made affordable for research and laboratories. The machine is assembled from commercially available products and custom-build parts, occupying 0.72 cubic meters, and operating entirely from computer aided design (CAD) and manufacturing (CAM) software. The 5-axis CNC micro-milling machine achieves sub-µm bidirectional repeatability (≤0.23 µm), machinable features <20 µm, and a work volume of 50 x 50 x 68 mm. The tool compatibility and milling parameters were designed to enable fabrication of virtually any mill-able material including metals like aluminum, brass, stainless steel, and titanium alloys. To demonstrate milling high resolution and high aspect ratios, we milled a thin wall from 360 brass with a width of 18.1 µm and an aspect ratio of ∼50:1. We also demonstrated fabricating molds from 360 brass with non-planar geometries to create PDMS microfluidic channels. These included a channel on a 90° edge and a channel on a rounded edge with a 250-µm radius of curvature. Our 5-axis CNC micro-milling machine offers the most versatility in prototyping microfluidics by enabling high resolutions, geometric complexity, a large work volume, and broad material compatibility, all within a user-friendly benchtop system.

Article activity feed