A Continuous, Low-Flow, and Multiplexing Pumping System for Microfluidics Applications

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Microfluidics optimize experimental procedures but often require external pumps for precise, steady, and low flow rates. These procedures typically require extended, continuous operation for long-duration experiments. We introduce the Dual-Syringe Continuous Pumping Mechanism (DSCPM), a low-cost, precise, and continuous pump for microfluidic applications with input multiplexing capability. With a 3D-printed housing and standard components, the DSCPM is easy to fabricate and accessible. Operating at a microliter per minute flow rates, the DSCPM uses fluidic bridge rectification to combine syringe pump precision with continuous infusion. We validated laminar flow in microfluidic "cell traps" without disrupting microbial growth. COMSOL simulations confirmed safe shear stress levels. We also developed and tested fluidic multiplexers for greater modularity and automation. Addressing current pump limitations, such as discontinuity and high costs, the DSCPM can enhance experimental capabilities and promote efficiency and precision while increasing accessibility of hardware automation in many fields.

Article activity feed