Non-disruptive inducible labeling of ER-membrane contact sites using the Lamin B Receptor

This article has been Reviewed by the following groups

Read the full article

Abstract

Membrane contact sites (MCSs) are areas of close proximity between organelles that allow the exchange of material, among other roles. The endoplasmic reticulum (ER) has MCSs with a variety of organelles in the cell. MCSs are dynamic, responding to changes in cell state, and are therefore best visualized through inducible labeling methods. However, existing methods typically distort ER-MCSs, by expanding contacts or creating artificial ones. Here we describe a new method for inducible labeling of ER-MCSs using the Lamin B receptor (LBR) and a generic anchor protein on the partner organelle. Termed LaBeRling , this versatile, one-to-many approach allows labeling of different types of ER-MCSs (mitochondria, plasma membrane, lysosomes, early endosomes, lipid droplets and Golgi), on-demand, in interphase or mitotic cells. LaBeRling is non-disruptive and does not change ER-MCSs in terms of the contact number, extent or distance measured; as determined by light microscopy or a deep-learning volume electron microscopy approach. We applied this method to study the changes in ER-MCSs during mitosis and to label novel ER-Golgi contact sites at different mitotic stages in live cells.

Article activity feed

  1. Excerpt

    Time to “LaBeRl” your contacts: The Royle lab develop a method for labelling ER membrane contact sites without changing the number, extent, or distance of the contacts.