Aging shapes infection profiles of influenza A virus and SARS-CoV-2 in human lung slices

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The recent coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favouring the development of severe pneumonia. In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as determined the pro-inflammatory and antiviral responses of the distal lung tissue. Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a sub-optimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to infection with both viruses by an induction of IL-6 and IP-10/CXCL10 mRNAs, being highest for H5N1. Finally, while SARS-CoV-2 infection was not causing detectable cell death, IAV infection caused significant cytotoxicity and induced significant early interferon responses. In summary, our findings suggest that aged lung tissue might not favour viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.

New & Noteworthy

PCLS from donors of varying ages were exposed to SARS-CoV-2 or IAV. Notably, the latter exhibited the highest replication efficacy, triggering early interferon responses, elevated IL-6 and IP-10/CXCL10 mRNAs expression, and significant cell death compared to SARS-CoV-2. Overall, across all age groups, the pulmonary environment showed sustained immunocompetence. For both viruses, older donor-derived PCLS displayed reduced viral permissiveness, suggesting aged lung tissue might not favour viral dissemination, implying other factors contribute to severe disease development.

Article activity feed