MOTL: enhancing multi-omics matrix factorization with transfer learning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Joint matrix factorization is a popular method for extracting lower dimensional representations of multi-omics data. It disentangles underlying mixtures of biological signals, facilitating efficient sample clustering, disease subtyping, or biomarker identification, for instance. However, when a multi-omics dataset is generated from only a limited number of samples, the effectiveness of matrix factorization is reduced. Addressing this limitation, we introduce MOTL (Multi-Omics Transfer Learning), a novel framework for multi-omics matrix factorization with transfer learning based on MOFA (Multi-Omics Factor Analysis). MOTL infers latent factors for a small multi-omics dataset, with respect to those inferred from a large heterogeneous learning dataset. We designed two protocols to evaluate transfer learning approaches, based on simulated and real multi-omics data. Using these protocols, we observed that MOTL improves the factorization of multi-omics datasets, comprised of a limited number of samples, when compared to factorization without transfer learning. We showcase the usefulness of MOTL on a glioblastoma dataset comprised of a small number of samples, revealing an enhanced delineation of cancer status and subtype thanks to transfer learning.

Article activity feed