Pathological C-terminal phosphomimetic substitutions alter the mechanism of liquid-liquid phase separation of TDP-43 low complexity domain

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

C-terminally phosphorylated TAR DNA-binding protein of 43 kDa (TDP-43) marks the proteinaceous inclusions that characterize a number of age-related neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration and Alzheimer’s disease. TDP-43 phosphorylation at S403/S404, and especially at S409/S410, is in fact accepted as a biomarker of proteinopathy. These residues are located within the low complexity domain (LCD), which also drives the protein’s liquid-liquid phase separation (LLPS). The impact of phosphorylation at these LCD sites on phase separation of the protein is a topic of great interest, as these post-translational modifications and LLPS are both implicated in proteinopathies. Here, we employed a combination of experimental and simulation-based approaches to explore this question on a phosphomimetic model of the TDP-43 LCD. Our turbidity and fluorescence microscopy data show that Ser-to-Asp substitutions at residues S403, S404, S409 and S410 alter the LLPS behavior of TDP-43 LCD. In particular, in contrast to the unmodified protein, the phosphomimetic variants display a biphasic dependence on salt concentration. Through coarse-grained modeling, we find that this biphasic salt dependence is derived from an altered mechanism of phase separation, in which LLPS-driving short-range intermolecular hydrophobic interactions are modulated by long-range attractive electrostatic interactions. Overall, this in vitro and in silico study provides a physiochemical foundation for understanding the impact of pathologically-relevant C-terminal phosphorylation on the LLPS of the TDP-43 in a more complex cellular environment.

Statement of Significance

Proteinaceous inclusions composed of phosphorylated, C-terminal TDP-43 fragments have long been recognized as hallmarks of several neurodegenerative diseases, in particular amyotrophic lateral sclerosis and frontotemporal dementia. A rapidly growing number of studies indicate that these proteinopathies may be closely related to liquid-liquid phased separation (LLPS) of TDP-43, but the impact of phosphorylation on TDP-43 LLPS remains largely unexplored. In this study we used a combination of experimental methods and coarse-grained simulations to ascertain, in mechanistic terms, how phosphorylation at pathologically-critical C-terminal sites impacts liquid-liquid phase separation of the low complexity domain of TDP-43. Our results broaden our understanding of the mechanisms driving pathogenic process in these neurodegenerative diseases.

Article activity feed