<p class="MDPI12title">The Allosteric Tug-of-War: Competitive Zinc and Dopamine Binding at the N-Terminal G14R Mutation Site of α-Synuclein

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The G14R mutation in α-synuclein is associated with aggressive, early-onset Parkinson’s disease, yet its impact on the protein’s N-terminal regulatory domain remains poorly understood. As an intrinsically disordered protein, α-synuclein’s conformational landscape is highly sensitive to sequence perturbations and ligand interactions. This study investigates a hypothesized "allosteric tug-of-war" between pro-aggregatory zinc ions and inhibitory dopamine at the N-terminus. Using a Python-based physicochemical structural proxy model, we assessed residue-level charge, volume, and interaction heuristics for the first 20 residues of the G14R variant. Our results demonstrate that the substitution of glycine with arginine at residue 14 creates a localized "rigidity hotspot" characterized by enhanced electrostatic coordination with Zn2+ ions. Crucially, we found that dopamine competitively attenuates this stabilization at overlapping residues, suggesting a displacement-based mechanism. This modeling framework provides a mechanistic basis for the G14R phenotype, suggesting that dopamine depletion may permit persistent zinc-mediated structural stabilization, thereby promoting aggregation. These findings highlight the N-terminus as a critical switch for modulating α-synuclein pathology through small-molecule competition.

Article activity feed