Ligand-induced conformational changes in the β1-Adrenergic Receptor Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry

Read the full article See related articles

Listed in

Log in to save this article

Abstract

G-Protein Coupled Receptors (GPCRs) constitute the largest family of signalling proteins responsible for translating extracellular stimuli into intracellular functions. When dysregulated, GPCRs drive numerous diseases and are the most targeted proteins in drug discovery. GPCR structural dynamics and activity can be modulated by a wide range of drugs, including full/partial agonists and antagonists. While crucial for developing novel therapeutics targeting GPCRs, the structural dynamics of the receptors associated with their activity upon drug interactions are not yet fully understood. Here, we employ Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS), to characterise the structural dynamics of turkey β1-adrenergic receptor (tβ1AR) in complex with nine ligands, including agonists, partial agonists and antagonists. We show that dynamic signatures across the GPCR structure can be grouped by compound modality. Surprisingly, we discovered repeated destabilisation of the intracellular loop 1 (ICL1) upon full agonist binding and stabilisation upon antagonist binding, suggesting that increased dynamics in this region are an essential component for G-protein recruitment. Multiple sequence alignments and molecular dynamics simulations indicate that L72 in ICL1 plays important structural role. Differential HDX-MS experiment of tβ1AR and tβ1AR L72A construct in complex with miniGs, in response to various ligands, suggests involvement of ICL1 in stabilising the GDP bound state by influencing the stability of HG helix of miniGs. Overall, our results provide a platform for determining drug modality and highlight how HDX-MS can be used to dissect receptor ligand interaction properties and GPCR mechanism.

Significance statement

Recent advances in hydrogen-deuterium exchange mass spectrometry have allowed probing conformational signatures of challenging membrane protein assemblies. We studied the structural dynamics of a class A GPCR, namely tβ1AR, in response to diverse ligands including agonists, antagonists and partial agonists. We demonstrate that the functional effect of compounds can be discerned by simply profiling the dynamics induced across the receptor, without the need for downstream interaction partners. We showed that ICL1 undergoes a significant change in dynamics between activated and inhibited states consistent with a role in downstream signaling pathways in class A GPCRs.

Article activity feed