On the lipid dependence of bacterial mechanosensitive channel gating in situ

Read the full article See related articles

Listed in

Log in to save this article


For bacterial mechanosensitive channels acting as turgor-adjusting osmolyte release valves, membrane tension is the primary stimulus driving opening transitions. Because tension is transmitted through the surrounding lipid bilayer, it is possible that the presence or absence of different lipid species may influence the function of these channels. In this work, we characterize the lipid dependence of chromosome-encoded MscS and MscL in E. coli strains with genetically altered lipid composition. We use two previously generated strains that lack one or two major lipid species (PE, PG, or CL) and engineer a third strain that is highly enriched in CL due to the presence of hyperactive cardiolipin synthase ClsA. We characterize the functional behavior of these channels using patch-clamp and quantify the relative tension midpoints, closing rates, inactivation depth, and the rate of recovery back to the closed state. We also measure the osmotic survival of lipid-deficient strains, which characterizes the functional consequences of lipid-mediated channel function at the cell level. We find that the opening and closing behavior of MscS and MscL tolerate the absence of specific lipid species remarkably well. The lack of cardiolipin (CL), however, reduces the active MscS population relative to MscL and decreases the closing rate, slightly increasing the propensity of MscS toward inactivation and slowing the recovery process. The data points to the robustness of the osmolyte release system and the importance of cardiolipin for the adaptive behavior of MscS.

Article activity feed