Switching Gō-Martini for Investigating Protein Conformational Transitions and Associated Protein-Lipid Interactions

Read the full article See related articles

Listed in

Log in to save this article

Abstract

Proteins are dynamic biomolecules that can transform between different conformational states when exerting physiological functions, which is difficult to simulate by using all-atom methods. Coarse-grained Gō-like models are widely-used to investigate large-scale conformational transitions, which usually adopt implicit solvent models and therefore cannot explicitly capture the interaction between proteins and surrounding molecules, such as water and lipid molecules. Here, we present a new method, named Switching Gō-Martini , to simulate large-scale protein conformational transitions between different states, based on the switching Gō method and the coarse-grained Martini 3 force field. The method is straight-forward and efficient, as demonstrated by the benchmarking applications for multiple protein systems, including glutamine binding protein (GlnBP), adenylate kinase (AdK), and β 2 -adrenergic receptor (β2AR). Moreover, by employing the Switching Gō-Martini method, we can not only unveil the conformational transition from the E2Pi-PL state to E1 state of the Type 4 P-type ATPase (P4-ATPase) flippase ATP8A1-CDC50, but also provide insights into the intricate details of lipid transport.

Article activity feed