The mechanics of correlated variability in segregated cortical excitatory subnetworks

Read the full article See related articles

Abstract

Understanding the genesis of shared trial-to-trial variability in neural activity within sensory cortex is critical to uncovering the biological basis of information processing in the brain. Shared variability is often a reflection of the structure of cortical connectivity since this variability likely arises, in part, from local circuit inputs. A series of experiments from segregated networks of (excitatory) pyramidal neurons in mouse primary visual cortex challenge this view. Specifically, the across-network correlations were found to be larger than predicted given the known weak cross-network connectivity. We aim to uncover the circuit mechanisms responsible for these enhanced correlations through biologically motivated cortical circuit models. Our central finding is that coupling each excitatory subpopulation with a specific inhibitory subpopulation provides the most robust network-intrinsic solution in shaping these enhanced correlations. This result argues for the existence of excitatory-inhibitory functional assemblies in early sensory areas which mirror not just response properties but also connectivity between pyramidal cells.

Article activity feed