Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Though nutritional status is a known regulator of long bone growth, it is largely unknown if and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2Cre ERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone, and that exogenous IGF-1 canceled this reduction and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2Cre ERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate, and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of the chondroprogenitor cells.

Article activity feed

  1. Excerpt

    Fasted bones grow fast later: chondroprogenitors in the growth plate of murine long bones adapt to dietary restriction, leading to catch-up growth during refeeding.