An intestinal sphingolipid promotes neuronal health across generations

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Maternal diet and environment can influence the neuronal health of offspring. Here, we report that diet-induced intestinal sphingolipid biosynthesis reduces adult-onset neurodegeneration intergenerationally in Caenorhabditis elegans . Feeding C. elegans with ursolic acid (UA), a natural plant product, provides neuroprotection by enhancing maternal provisioning of sphingosine-1-phosphate (S1P) - a bioactive sphingolipid. S1P promotes neuronal health across generations by upregulating transcription of the acid ceramidase-1 ( asah-1 ) gene in the intestine. Intergenerational intestine-to-oocyte S1P transfer is essential for promoting neuronal health and is dependent on the lipoprotein yolk receptor RME-2 (Receptor-Mediated Endocytosis-2). Spatially regulating sphingolipid biosynthesis is critical, as inappropriate asah-1 neuronal expression causes developmental axon outgrowth defects. Our results reveal that sphingolipid homeostasis impacts the development and intergenerational health of the nervous system.

One-Sentence Summary

An intestinal lipid prevents neurodegeneration across generations.

Article activity feed