Measuring Community Resilience During the COVID-19 based on Community Wellbeing and Resource Distribution
Abstract
The COVID-19 pandemic has severely harmed every aspect of our daily lives, resulting in a slew of social problems. Therefore, it is critical to accurately assess the current state of community functionality and resilience under this pandemic for successful recovery. To this end, various types of social sensing tools, such as tweeting and publicly released news, have been employed to understand individuals’ and communities’ thoughts, behaviors, and attitudes during the COVID-19 pandemic. However, some portions of the released news are fake and can easily mislead the community to respond improperly to disasters like COVID-19. This paper aims to assess the correlation between various news and tweets collected during the COVID-19 pandemic on community functionality and resilience. We use fact-checking organizations to classify news as real, mixed, or fake, and machine learning algorithms to classify tweets as real or fake to measure and compare community resilience (CR). Based on the news articles and tweets collected, we quantify CR based on two key factors, community wellbeing and resource distribution , where resource distribution is assessed by the level of economic resilience, and community capital . Based on the estimates of these two factors, we quantify CR from both news articles and tweets and analyze the extent to which CR measured from the news articles can reflect the actual state of CR measured from tweets. To improve the operationalization and sociological significance of this work, we use dimension reduction techniques to integrate the dimensions.
Article activity feed
-
SciScore for 10.1101/2022.05.23.22275454: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter:…
SciScore for 10.1101/2022.05.23.22275454: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
Read the original sourceWas this evaluation helpful? -