Synthetic memory circuits for programmable cell reconfiguration in plants

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the ability to integrate multiple customizable input signals through a processing unit constructed from biological parts, to produce a predictable and programmable output. Here, we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo , demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Through utilization of genetic recombination these circuits create stable long-term changes in expression and recording of past stimuli. This highly-compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealised traits into plants.

Article activity feed