SARS-CoV-2 Omicron Variant AI-based Primers

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

As the COVID-19 pandemic continues to affect the world, a new variant of concern, B.1.1.529 (Omicron), has been recently identified by the World Health Organization. At the time of writing, there are still no available primer sets specific to the Omicron variant, and its identification is only possible by using multiple targets, checking for specific failures, amplifying the suspect samples, and sequencing the results. This procedure is considerably time-consuming, in a situation where time might be of the essence. In this paper we use an Artificial Intelligence (AI) technique to identify a candidate primer set for the Omicron variant. The technique, based on Evolutionary Algorithms (EAs), has been already exploited in the recent past to develop primers for the B.1.1.7/Alpha variant, that have later been successfully tested in the lab. Starting from available virus samples, the technique explores the space of all possible subsequences of viral RNA, evaluating them as candidate primers. The criteria used to establish the suitability of a sequence as primer includes its frequency of appearance in samples labeled as Omicron, its absence from samples labeled as other variants, a specific range of melting temperature, and its CG content. The resulting primer set has been validated in silico and proves successful in preliminary laboratory tests. Thus, these results prove further that our technique could be established as a working template for a quick response to the appearance of new SARS-CoV-2 variants.

Article activity feed

  1. SciScore for 10.1101/2022.01.21.475953: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Cell Line AuthenticationAuthentication: For further validation, we downloaded 140,874 sequences labeled as BA.1, 701 BA.2 and 19 BA.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.