RASCL: Rapid Assessment Of SARS-CoV-2 Clades Through Molecular Sequence Analysis

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

An important component of efforts to manage the ongoing COVID19 pandemic is the R apid A ssessment of how natural selection contributes to the emergence and proliferation of potentially dangerous S ARS-CoV-2 lineages and CL ades (RASCL). The RASCL pipeline enables continuous comparative phylogenetics-based selection analyses of rapidly growing clade-focused genome surveillance datasets, such as those produced following the initial detection of potentially dangerous variants. From such datasets RASCL automatically generates down-sampled codon alignments of individual genes/ORFs containing contextualizing background reference sequences, analyzes these with a battery of selection tests, and outputs results as both machine readable JSON files, and interactive notebook-based visualizations.

Availability

RASCL is available from a dedicated repository at https://github.com/veg/RASCL and as a Galaxy workflow https://usegalaxy.eu/u/hyphy/w/rascl . Existing clade/variant analysis results are available here: https://observablehq.com/@aglucaci/rascl .

Contact

Dr. Sergei L Kosakovsky Pond ( spond@temple.edu ).

Supplementary information

N/A

Article activity feed

  1. SciScore for 10.1101/2022.01.15.476448: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.