FRaeppli, a multispectral imaging toolbox for cell tracing and dense tissue analysis in zebrafish

Read the full article See related articles

Abstract

Visualizing cell shapes, interactions and lineages of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated tracking cells in in vivo and mapping neuronal connectivity. Nevertheless, integrating multi-fluorophore information into the context of developing tissues in zebrafish is challenging given their cytoplasmic localization and spectral incompatibility with commonly used fluorescent markers. Here, we developed FRaeppli ( F ish- Raeppli ) expressing bright membrane-or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. By tailoring hyperspectral protocols for time-efficient acquisition, we demonstrate FRaeppli’s suitability for live imaging of complex internal organs, like the liver. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting shared developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and tissue lineages at single-cell resolution in zebrafish.

Article activity feed