A Novel Convolutional Neural Network for COVID-19 detection and classification using Chest X-Ray images

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The early and rapid diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), the main cause of fatal pandemic coronavirus disease 2019 (COVID-19), with the analysis of patients chest X-ray (CXR) images has life-saving importance for both patients and medical professionals. In this research a very simple novel and robust deep-learning convolutional neural network (CNN) model with less number of trainable-parameters is proposed to assist the radiologists and physicians in the early detection of COVID-19 patients. It also helps to classify patients into COVID-19, pneumonia and normal on the bases of analysis of augmented X-ray images. This augmented dataset contains 4803 COVID-19 from 686 publicly available chest X-ray images along with 5000 normal and 5000 pneumonia samples. These images are divided into 80% training and 20 % validation. The proposed CNN model is trained on training dataset and then tested on validation dataset. This model has a promising performance with a mean accuracy of 92.29%, precision of 99.96%, Specificity of 99.85% along with Sensitivity value of 85.92%. The result can further be improved if more data of expert radiologist is publically available.

Article activity feed

  1. SciScore for 10.1101/2021.08.11.21261946: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.