A Novel Convolutional Neural Network for COVID-19 detection and classification using Chest X-Ray images
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The early and rapid diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), the main cause of fatal pandemic coronavirus disease 2019 (COVID-19), with the analysis of patients chest X-ray (CXR) images has life-saving importance for both patients and medical professionals. In this research a very simple novel and robust deep-learning convolutional neural network (CNN) model with less number of trainable-parameters is proposed to assist the radiologists and physicians in the early detection of COVID-19 patients. It also helps to classify patients into COVID-19, pneumonia and normal on the bases of analysis of augmented X-ray images. This augmented dataset contains 4803 COVID-19 from 686 publicly available chest X-ray images along with 5000 normal and 5000 pneumonia samples. These images are divided into 80% training and 20 % validation. The proposed CNN model is trained on training dataset and then tested on validation dataset. This model has a promising performance with a mean accuracy of 92.29%, precision of 99.96%, Specificity of 99.85% along with Sensitivity value of 85.92%. The result can further be improved if more data of expert radiologist is publically available.
Article activity feed
-
SciScore for 10.1101/2021.08.11.21261946: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for …
SciScore for 10.1101/2021.08.11.21261946: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-