Systematic reconstruction of the cellular trajectories of mammalian embryogenesis

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Mammalian embryogenesis is characterized by rapid cellular proliferation and diversification. Within a few weeks, a single cell zygote gives rise to millions of cells expressing a panoply of molecular programs, including much of the diversity that will subsequently be present in adult tissues. Although intensively studied, a comprehensive delineation of the major cellular trajectories that comprise mammalian development in vivo remains elusive. Here we set out to integrate several single cell RNA-seq datasets (scRNA-seq) that collectively span mouse gastrulation and organogenesis. We define cell states at each of 19 successive stages spanning E3.5 to E13.5, heuristically connect them with their pseudo-ancestors and pseudo-descendants, and for a subset of stages, deconvolve their approximate spatial distributions. Despite being constructed through automated procedures, the resulting trajectories o f m ammalian e mbryogenesis (TOME) are largely consistent with our contemporary understanding of mammalian development. We leverage TOME to nominate transcription factors (TF) and TF motifs as key regulators of each branch point at which a new cell type emerges. Finally, to facilitate comparisons across vertebrates, we apply the same procedures to single cell datasets of zebrafish and frog embryogenesis, and nominate “cell type homologs” based on shared regulators and transcriptional states.

Article activity feed

  1. Excerpt

    An scRNA-seq #subwaymap of cellular trajectories in early mouse development, presented in this new, exciting preprint by @CXchengxiangQIU et al.!