Large-scale analysis of SARS-CoV-2 synonymous mutations reveals the adaptation to the human codon usage during the virus evolution

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Many large national and transnational studies have been dedicated to the analysis of SARS-CoV-2 genome, most of which focused on missense and nonsense mutations. However, approximately 30% of the SARS-CoV-2 variants are synonymous, therefore changing the target codon without affecting the corresponding protein sequence.

By performing a large-scale analysis of sequencing data generated from almost 400,000 SARS-CoV-2 samples, we show that silent mutations increasing the similarity of viral codons to the human ones tend to fixate in the viral genome over-time. This indicates that SARS-CoV-2 codon usage is adapting to the human host, likely improving its effectiveness in using the human aminoacyl-tRNA set through the accumulation of deceitfully neutral silent mutations.

One-Sentence Summary

Synonymous SARS-CoV-2 mutations related to the activity of different mutational processes may positively impact viral evolution by increasing its adaptation to human codon usage.

Article activity feed

  1. SciScore for 10.1101/2021.04.23.441151: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 13. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.